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1
KEYFRAME SELECTION FOR ROBUST
VIDEO-BASED STRUCTURE FROM MOTION

PRIORITY INFORMATION

This application claims benefit of priority of U.S. Provi-
sional Application Ser. No. 61/621,365 entitled “Structure
from Motion Methods and Apparatus” filed Apr. 6, 2012, the
content of which is incorporated by reference herein in its
entirety.

BACKGROUND
Description of the Related Art

In computer vision, inferring rigid-body motions of a cam-
era from a video or set of images is a problem known as
Structure from Motion (SFM). In SFM, a task or goal is to
estimate the camera motion from a set of point correspon-
dences in a set of images or video frames. Obtaining Structure
from Motion (SFM) algorithms is of importance because a
successful SFM algorithm would enable a wide range of
applications in different domains including 3D image-based
modeling and rendering, video stabilization, panorama
stitching, video augmentation, vision based robot navigation,
human-computer interaction, etc.

SUMMARY

Various embodiments of Structure from Motion (SFM)
techniques and algorithms are described that may be applied,
for example, to find the three-dimensional (3D) structures of
a scene, for example from a video taken by a moving video
camera or from a set of images taken with a still camera, as
well as systems that implement these algorithms and tech-
niques. In SFM, a task or goal is to estimate the camera
motion (which may, but does not necessarily, have both trans-
lation and rotation components) from a set of point corre-
spondences in a set of images or video frames. In addition, in
at least some cases, intrinsic camera parameters (e.g., focal
length) may also be estimated if not known. Performing the
task of estimating camera motion and intrinsic parameters for
a frame or a sequence of frames may be referred to as recon-
struction. Thus, a reconstruction algorithm or technique
(which may also be referred to as an SFM technique) may be
implemented and applied to estimate the camera motion and
intrinsic parameters for image sequences.

Embodiments of a general SFM technique are described
that are generally directed to performing reconstruction for
image sequences in which the camera motion includes a
non-zero translation component. The general SFM technique
estimates the rotation and translation components of the cam-
eramotion, and may also estimate the camera intrinsic param-
eters (e.g., focal length) if not known. In addition, the general
SFM technique may be directed to performing reconstruction
for image sequences in which the scene does not contain a
dominant plane. Embodiments of the general SFM technique
may implement an adaptive reconstruction algorithm that
starts by adaptively determining and reconstructing an initial
set of keyframes that covers only a part of an image sequence
(e.g., a set of spaced frames somewhere in the middle of the
sequence), and that incrementally and adaptively determines
and reconstructs additional keyframes to fully cover the
image sequence. In at least some embodiments, the adaptive
reconstruction algorithm then adaptively determines and
reconstructs optimization keyframes to provide a better

10

15

30

40

45

2

reconstruction. The rest of the frames in the sequence may
then be reconstructed based on the determined and recon-
structed keyframes.

Embodiments of an adaptive technique are described for
iteratively selecting and reconstructing keyframes to fully
cover animage sequence. The technique may, for example, be
used after an initialization technique that determines and
reconstructs a set of initial keyframes covering a portion of
the image sequence in an adaptive reconstruction algorithm
implemented by a general SFM technique as described
herein. In the adaptive keyframe selection and reconstruction
technique, keyframes are processed until there are no more to
process. A next keyframe to process may be determined
according to an adaptive keyframe selection technique. In at
least some embodiments of the adaptive keyframe selection
technique, a next keyframe may be selected in either of two
directions: before and after the current reconstructed set of
keyframes. At least some embodiments may alternate
between the two directions.

The determined keyframe may be reconstructed and thus
added to the current reconstruction. A global optimization
may be performed on the current reconstruction. One or more
outlier points may be determined and removed from the
reconstruction. One or more inlier points may be determined
and recovered (added to the reconstruction). If the number of
inlier points that were added exceeds a threshold, then a
global optimization may again be performed on the current
reconstruction. If the current reconstruction is already a
Euclidian reconstruction, the technique determines if there
are more keyframes to be processed and, if so, selects and
processes a next frame. If the current reconstruction is a
projective construction, and if there are enough frames pro-
cessed to perform self-calibration, then self-calibration may
be performed to upgrade the projective reconstruction to a
Euclidean reconstruction. If the results of the self-calibration
are accepted, the technique determines if there are more key-
frames to be processed and, if so, selects and processes a next
frame. Otherwise, the technique reverts to the reconstruction
prior to the self-calibration attempt, determines if there are
more keyframes to be processed and, if so, selects and pro-
cesses a next frame.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1is ahigh-level flowchart of a general adaptive recon-
struction algorithm, according to at least some embodiments.

FIG. 2 is a high-level flowchart of a general 3D Structure
from Motion (SFM) technique, according to at least some
embodiments.

FIG. 3 is a flowchart of an initialization technique that may
be used in a general adaptive reconstruction algorithm, for
example as implemented by a general 3D SFM technique,
according to at least some embodiments.

FIG. 4 is a flowchart of an adaptive technique for iteratively
selecting and reconstructing additional keyframes to fully
cover the image sequence that may be used in a general
adaptive reconstruction algorithm, for example as imple-
mented by a general 3D SFM technique, according to at least
some embodiments.

FIG. 5 is a flowchart of a method for selecting a next
keytrame, according to at least some embodiments.

FIG. 6 is a flowchart of a method to decrease the distance
between the current reconstructed set and the next keyframe
that may be used in at least some embodiments.
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FIG. 7 is a flowchart of a self-calibration technique that
may be applied in the adaptive technique for iteratively select-
ing and reconstructing additional keyframes, according to at
least some embodiments.

FIG. 8 is a flowchart of a technique for selecting and
reconstructing optimizing keyframes (which may be referred
to as opt-keyframes) that may be used in a general adaptive
reconstruction algorithm, for example as implemented by a
general 3D SFM technique, to provide a better reconstruc-
tion, according to at least some embodiments.

FIG. 9 is a high-level flowchart of a nonlinear self-calibra-
tion technique, according to at least some embodiments.

FIGS. 10A through 10F are example frames extracted from
a video sequence in which results of an SFM technique as
described herein were used to insert a 3D object, according to
at least some embodiments.

FIG. 11 illustrates a module that may implement one or
more of the Structure from Motion (SFM) techniques and
algorithms as described herein, according to at least some
embodiments.

FIG. 12 illustrates an example computer system that may
be used in embodiments.

While the invention is described herein by way of example
for several embodiments and illustrative drawings, those
skilled in the art will recognize that the invention is not
limited to the embodiments or drawings described. It should
be understood, that the drawings and detailed description
thereto are not intended to limit the invention to the particular
form disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention. The headings used
herein are for organizational purposes only and are not meant
to be used to limit the scope of the description. As used
throughout this application, the word “may” is used in a
permissive sense (i.e., meaning having the potential to),
rather than the mandatory sense (i.e., meaning must). Simi-
larly, the words “include”, “including”, and “includes” mean
including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following detailed description, numerous specific
details are set forth to provide a thorough understanding of
claimed subject matter. However, it will be understood by
those skilled in the art that claimed subject matter may be
practiced without these specific details. In other instances,
methods, apparatuses or systems that would be known by one
of ordinary skill have not been described in detail so as not to
obscure claimed subject matter.

Some portions of the detailed description which follow are
presented in terms of algorithms or symbolic representations
of operations on binary digital signals stored within a
memory of a specific apparatus or special purpose computing
device or platform. In the context of this particular specifica-
tion, the term specific apparatus or the like includes a general
purpose computer once it is programmed to perform particu-
lar functions pursuant to instructions from program software.
Algorithmic descriptions or symbolic representations are
examples of techniques used by those of ordinary skill in the
signal processing or related arts to convey the substance of
their work to others skilled in the art. An algorithm is here,
and is generally, considered to be a self-consistent sequence
of'operations or similar signal processing leading to a desired
result. In this context, operations or processing involve physi-
cal manipulation of physical quantities. Typically, although
not necessarily, such quantities may take the form of electri-
cal or magnetic signals capable of being stored, transferred,
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combined, compared or otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to such signals as bits, data, values, elements,
symbols, characters, terms, numbers, numerals or the like. It
should be understood, however, that all of these or similar
terms are to be associated with appropriate physical quanti-
ties and are merely convenient labels. Unless specifically
stated otherwise, as apparent from the following discussion, it
is appreciated that throughout this specification discussions
utilizing terms such as “processing,” “computing,” “calculat-
ing,” “determining” or the like refer to actions or processes of
a specific apparatus, such as a special purpose computer or a
similar special purpose electronic computing device. In the
context of this specification, therefore, a special purpose
computer or a similar special purpose electronic computing
device is capable of manipulating or transforming signals,
typically represented as physical electronic or magnetic
quantities within memories, registers, or other information
storage devices, transmission devices, or display devices of
the special purpose computer or similar special purpose elec-
tronic computing device.

Various embodiments of Structure from Motion (SFM)
techniques and algorithms are described that may be applied,
for example, to find the three-dimensional (3D) structures of
a scene, for example from a video taken by a moving video
camera or from a set of images taken with a still camera.
Systems that may implement these algorithms and techniques
are also described. In SFM, a task or goal is to estimate the
camera motion (which may, but does not necessarily, have
both translation and rotation components) from a set of point
correspondences in a set of images or video frames. In addi-
tion, in at least some cases, intrinsic camera parameters (e.g.,
focal length) may also be estimated if not known. Performing
the task of estimating camera motion and intrinsic parameters
for a frame or a sequence of frames may be referred to as
reconstruction. Thus, a reconstruction algorithm or technique
(which may also be referred to as an SFM technique) may be
implemented and applied to estimate the camera motion and
intrinsic parameters for image sequences. Note that a distinct
camera may be assumed for each image or frame in an image
sequence. Thus, each frame or image in a sequence may be
referred to as a “camera.”

Embodiments of a general 3D reconstruction technique,
which may also be referred to as a general SFM technique, are
described that are generally directed to performing recon-
struction for image sequences in which the camera motion
includes a non-zero translation component. The general SFM
technique estimates the rotation and translation components
of the camera motion, and may also estimate the camera
intrinsic parameters (e.g., focal length) if not known. In addi-
tion, the general SFM technique may be directed to perform-
ing reconstruction for image sequences in which the scene
does not contain a dominant plane.

Embodiments of the general 3D reconstruction technique
may implement embodiments of an adaptive reconstruction
algorithm that starts by adaptively determining and recon-
structing an initial set of keyframes that covers only a part of
an image sequence (e.g., a set of spaced frames somewhere in
the middle of the sequence), and that incrementally and adap-
tively determines and reconstructs additional keyframes to
fully cover the image sequence. In at least some embodi-
ments, the adaptive reconstruction algorithm then adaptively
determines and reconstructs optimization keyframes to pro-
vide a better reconstruction. The rest of the frames in the
sequence may then be reconstructed based on the determined
and reconstructed keyframes. At least some embodiments of
the adaptive reconstruction algorithm may be configured to
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handle both cases where the intrinsic camera parameters (e.g.,
focal length) are known (e.g., via user input or via metadata
provided with the input image sequence) and cases where the
intrinsic camera parameters are not known. The first case may
be referred to herein as the calibrated case, and the second
case may be referred to herein as the uncalibrated case. In at
least some embodiments, in the calibrated case, a Euclidian
(or metric) reconstruction technique may be applied. In at
least some embodiments, in the uncalibrated case, a projec-
tive reconstruction technique may at least initially be applied.
A self-calibration technique is described that may, for
example be applied to produce a Euclidian (or metric) recon-
struction in the uncalibrated case. In addition, at least some
embodiments of the adaptive reconstruction algorithm may
be configured to handle image sequences with either constant
(fixed) focal length or varying focal length (e.g., resulting
from zooming of the camera lens), in both the calibrated and
uncalibrated cases.

FIG. 1 is a high-level flowchart of an adaptive reconstruc-
tion algorithm, according to at least some embodiments. As
indicated at 10, point trajectories (which may also be referred
to as feature trajectories) for an image sequence (e.g., a video
sequence, or a set of still photographs) may be obtained. Each
point trajectory tracks a feature (or point) across two or more
of'the images in the sequence. Note that a point trajectory may
be referred to simply as a point in this context. As indicated at
20, an initialization technique may be performed to determine
and reconstruct a set of initial keyframes covering a portion of
the image sequence according to the point trajectories. As
indicated at 30, an adaptive technique may then be performed
to iteratively select and reconstruct additional keyframes to
cover the image sequence. As indicated at 40, an opt-key-
frame technique may then be performed to determine and
reconstruct optimization keyframes to improve the quality of
the reconstruction. As indicated at 50, non-keyframes (e.g.,
all frames that have not yet been included in the reconstruc-
tion) may be reconstructed. As indicated at 60, final process-
ing may be performed. Output of the algorithm includes at
least the camera intrinsic parameters and the Euclidean
motion parameters for the images in the sequence. Each of
elements 10 through 60 is discussed in more detail below.

Embodiments of feature tracking techniques are described
that may be used to establish point trajectories over time in an
input image sequence. The point trajectories may then, for
example, be used as input to embodiments of the adaptive
reconstruction algorithm in embodiments of the general 3D
reconstruction technique. However, note that embodiments
of'the feature tracking techniques may be used in or with any
method or technique that may be applied to image sequences
and that requires point trajectories. For example, embodi-
ments of the feature tracking techniques may be used to
generate point trajectories in a plane-based reconstruction
technique or a rotation-based reconstruction technique.

Embodiments of an initialization technique are described
that may, for example, be used in the adaptive reconstruction
algorithm described above. In the initialization technique,
two initial keyframes are selected from a set of temporally
spaced keyframe candidates, the two initial keyframes are
reconstructed, and then one or more additional keyframes
between the two initial keyframes are selected and recon-
structed.

Embodiments of an adaptive technique are described for
iteratively selecting and reconstructing additional keyframes
to fully cover the image sequence; the technique may, for
example, be used in the adaptive reconstruction algorithm
described above. In this adaptive technique, in the uncali-
brated case, a projective reconstruction technique may at least
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initially be applied, and a self-calibration technique may be
applied to generate a Euclidian reconstruction.

Embodiments of a nonlinear self-calibration technique are
described that may, for example, be used in the adaptive
technique for iteratively selecting and reconstructing addi-
tional keyframes to fully cover the image sequence as
described above. The nonlinear self-calibration technique
may, for example, be used in the uncalibrated case to generate
a Buclidian reconstruction. In contrast to conventional self-
calibration methods that use linear or semi-linear algorithms,
embodiments of the self-calibration technique use a nonlinear
least squares optimization technique to infer the camera
parameters. Note that embodiments of the nonlinear self-
calibration technique may be used in other reconstruction or
SFM techniques than those described herein, and in other
image processing methods or techniques than SFM tech-
niques.

Embodiments of a technique are described for selecting
and reconstructing optimizing keyframes (which may be
referred to as opt-keyframes) to provide a better reconstruc-
tion; the technique may, for example, be used in the adaptive
reconstruction algorithm described above. This technique
may add and reconstruct frames to the set of keyframes
already generated by the initialization technique and the
adaptive technique for iteratively selecting and reconstruct-
ing additional keyframes. In addition, the technique may
determine and remove outlier points from the projection, and
determine and recover inlier points in the projection. Adding
the opt-keyframes and inlier points may result in additional,
and possibly shorter, point trajectories being included in the
reconstruction, thus providing a better reconstruction that
may be more suited for later operations that may be applied to
the image sequence, such as plane fitting.

In at least some embodiments of the adaptive reconstruc-
tion algorithm, in a final processing stage, to avoid including
non-contiguous frames or cameras in the reconstruction, a
largest contiguous subset of the frames may be determined.
Frames that are not in this subset may be removed from the
reconstruction. In addition, point trajectories that do not
appear in this largest contiguous subset may be removed from
the reconstruction. In some embodiments, a global optimiza-
tion of the reconstruction may be performed in the final pro-
cessing stage after the non-contiguous frames and point tra-
jectories have been removed.

General 3D Reconstruction Technique
Introduction

Embodiments of a robust system for estimating camera
motion (rotation and translation) in image sequences, a prob-
lem known in computer vision as Structure from Motion
(SFM), are described. Embodiments of a general 3D recon-
struction technique, which may also be referred to as a gen-
eral SFM technique, are described that are generally directed
to performing reconstruction for image sequences in which
the camera motion includes a non-zero translation compo-
nent. In other words, the camera has moved when capturing
the image sequence. The general SFM technique estimates
the rotation and translation components of the camera
motion, and may also estimate the camera intrinsic param-
eters (e.g., focal length) if not known. In addition, the general
SFM technique may be generally directed to performing
reconstruction for image sequences in which the scene does
not contain a dominant plane.

In at least some embodiments, input to the general SFM
technique may include at least an input image sequence.
Output may include the intrinsic camera parameters (e.g.,
focal length) and the Euclidean (or metric) motion parameters
for the images in the sequence. In at least some embodiments,
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a non-zero camera translation is assumed in the image
sequence. In addition, it may be assumed that the scene does
not include a dominant plane across a portion or all of the
image sequence.

In order to obtain a Euclidean reconstruction, the intrinsic
parameters of the camera(s) used to capture the image
sequence may need to be obtained. At least some embodi-
ments of the general SFM technique may be configured to
handle both cases where the intrinsic camera parameters (e.g.,
focal length) are known (e.g., via user input or via metadata
provided with the input image sequence) and cases where the
intrinsic camera parameters are not known. The first case may
be referred to herein as the calibrated case, and the second
case may be referred to herein as the uncalibrated case.

In at least some embodiments of the general SFM tech-
nique, in the case where the intrinsic parameters are not
known (the uncalibrated case), one or more of the following
assumptions may be made:

the principal point of each image is known, as is the pixel

aspect ratio. Note that both principal points may be
allowed to change over time;

there is no pixel skew. The only potential unknown intrinsic

parameter is the focal length; and

information on whether or not the focal length changes in

the sequence is available.

From the above, in at least some embodiments of the gen-
eral SFM technique, three different cases may be supported:

calibrated; all the intrinsic parameters are known;

uncalibrated, with a constant focal length; and
uncalibrated, with a varying focal length.

At least some embodiments of the general SFM technique
may implement an incremental approach to generating a
reconstruction from an input image sequence. In particular, at
least some embodiments of the general SFM technique may
start from an initial subset of frames and add one or more
frames at a time until the entire image sequence is processed.

As an alternative to the incremental approach that pro-
cesses all the frames in an image sequence, embodiments of
the general SFM technique may be applied to sub-sequences
of frames in a divide-and-conquer approach. A divide-and-
conquer approach divides the image sequence into sub-se-
quences, solves the sub-sequences, and recursively merges
the sub-sequences to obtain a final result.

In at least some embodiments, high-level components of
the general SFM technique may include a feature tracking
component, an initialization component that adaptively deter-
mines and reconstructs an initial set of keyframes that covers
only a part of an image sequence (e.g., a set of spaced frames
somewhere in the middle of the sequence), a keyframe recon-
struction component that incrementally and adaptively deter-
mines and reconstructs additional keyframes to fully cover
the image sequence, a self-calibration component that may be
applied in the keyframe reconstruction component to produce
a Buclidian (or metric) reconstruction in the uncalibrated
case, an opt-keyframe reconstruction component that adap-
tively determines and reconstructs optimization keyframes to
provide a better reconstruction, a non-keyframe reconstruc-
tion component that reconstructs any remaining frames in the
image sequence, and a final processing component.

FIG. 2 is a high-level flowchart of the general SFM tech-
nique, according to at least some embodiments. Note that the
general SFM technique as illustrated in FIG. 2 implements an
embodiment of the adaptive reconstruction algorithm as illus-
trated in FIG. 1, with some additional elements added.

As indicated at 100, an input image sequence may be
obtained. The image sequence may, for example, be a video
taken by a moving video camera or a set of images taken with

10

15

20

25

30

35

40

45

50

55

60

65

8

a still camera. As indicated at 102, a feature tracking tech-
nique may be applied to establish point trajectories over time
in the input image sequence. Embodiments of a feature track-
ing technique that may be used in at least some embodiments
are described later in this document. Output of the feature
tracking technique is a set of point trajectories. As indicated at
104, an initialization technique may be performed to deter-
mine and reconstruct a set of initial keyframes covering a
portion of the image sequence according to the point trajec-
tories. Input to the initialization technique includes at least the
set of point trajectories. Output of the initialization technique
is a set of initial keyframes and the initial reconstruction.

Elements 106 through 110 are a keyframe reconstruction
loop that incrementally and adaptively determines and recon-
structs additional keyframes to fully cover the image
sequence. As indicated at 106, a new keyframe is determined
and reconstructed. In the calibrated case, a Euclidian recon-
struction technique can be performed, since the camera intrin-
sic parameters are known. In the uncalibrated case, a projec-
tive reconstruction technique may be performed. As indicated
at 108, in the uncalibrated case, a self-calibration technique
may be applied to produce a Euclidian (or metric) reconstruc-
tion for the frame, if there are enough frames to perform the
self-calibration. At 110, if there are more keyframes to be
reconstructed, then the method returns to 106 to add a next
keytrame. Otherwise, the method goes to element 112.

As indicated at 112, an opt-keyframe technique may then
be performed to determine and reconstruct optimization key-
frames to improve the quality of the reconstruction. As indi-
cated at 114, non-keyframes (keyframes that have not yet
been included in the reconstruction) may be reconstructed. As
indicated at 116, final processing may be performed. As indi-
cated at 118, at least the camera intrinsic parameters and the
Euclidean motion parameters for the images in the input
image sequence may be output.

The elements of the general SFM technique shown in FIG.
2 are discussed in more detail below.

Feature Tracking

As indicated at 102 of FIG. 2, given an input image
sequence, embodiments of the general SFM technique may
first perform feature tracking to establish point trajectories
over time. A basic idea of feature tracking is to find the
locations of the same point in subsequent video frames. In
general, a point should be tracked as long and as accurately as
possible, and as many points as possible should be tracked.

In at least some embodiments, the general SFM technique
may use an implementation of the Lucas-Kanade-Tomasi
algorithm to perform feature tracking. In these embodiments,
for every point at time t, a translational model may be used to
track against the previous video frame (at time t-1), and an
affine model may be used to track against the reference video
frame at time t, (t, may vary according to the point). The
result of feature tracking is a set of point trajectories. Each
point trajectory includes the two-dimensional (2D) locations
of the “same” point in a contiguous set of frames. Let x,;
denote the 2D location ofthe i-th point in the j-th image. Since
not all of the points are present in all of the images, x,; is
undefined for some combinations of'i and j. To simplify the
notation, a binary characteristic function, 1, .\, =1, may be
used if the i-th point is present on the j-th image; otherwise,
1, ~0. Through v, ., quantities such as ¢, x,  may be used
even if x; ; is undefined.

Note that various feature tracking algorithms and/or vari-
ous matching paradigms, such as detecting and matching
robust image features, may be used in various embodiments.
The general SFM technique can work with any feature track-
ing technique that computes point trajectories.
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In at least some embodiments, the point trajectories are
input to the rest of the general SFM technique; the input
image sequence may not be referenced after feature tracking.
Initialization Technique

As indicated at 20 of FIG. 1 and at 104 of FIG. 2, an
initialization technique may be performed in an adaptive
reconstruction algorithm to determine and reconstruct a set of
initial keyframes covering a portion of the image sequence
according to the point trajectories. As previously noted, at
least some embodiments of the general SFM technique may
implement an incremental approach that adds one or more
frames to the reconstruction at a time. To accomplish this, an
initial reconstruction may need to be generated. A goal of the
initialization technique is to compute an initial reconstruction
from a subset of frames in the image sequence. In at least
some embodiments, two-view reconstruction algorithms may
be used. Since the general SFM technique is incremental, the
quality of the initial reconstruction may be important in gen-
erating a quality overall reconstruction. In at least some
embodiments, to help achieve a quality initial reconstruction,
two initial frames that best satisfy requirements of the initial
reconstruction algorithm may be determined.

FIG. 3 is a flowchart of an initialization technique, accord-
ing to at least some embodiments. Note that the initialization
technique as illustrated in FIG. 3 may be used at 20 of FIG. 1
and at 104 of FIG. 2. Input to the initialization technique
includes at least the set of point trajectories. As indicated at
210 of FIG. 3, two initial keyframes may be selected. As
indicated at 220, a reconstruction may be performed from the
two initial keyframes. As indicated at 230, additional key-
frames between the initial keyframes may be determined and
reconstructed. As indicated at 240, a global optimization of
the reconstruction may be performed. As indicated at 250,
one or more outlier points may be determined and removed.
As indicated at 260, one or more inlier points may be deter-
mined and recovered. Note that outlier and inlier points cor-
respond to particular point trajectories, and that the entire
point trajectory is removed (for outlier points) or recovered
(for inlier points). At 270, if more than a threshold number of
inliers were recovered at 260, another global optimization
may be performed as indicated at 280. Otherwise, the initial-
ization technique is done. Output of the initialization tech-
nique is a set of initial keyframes and the initial reconstruc-
tion.

The elements of the initialization technique shown in FIG.
3 are discussed in more detail below.

Keytrame Selection

In at least some embodiments, the initialization technique
may select a set of candidate frames from the image sequence
in which the technique searches for the two best frames to use
as initial frames. This set of candidate frames may be referred
to as keyframes. In at least some embodiments, a keyframe
selection algorithm may select a set of evenly spaced key-
frames, for example one keyframe every half second or one
keytrame every 15 frames, starting from the first frame of the
image sequence. In at least some embodiments, video frame
rate information, if available, may be used in determining
which frames to select. For example, if the video frame rate is
30 frames per second, and the algorithm wants to sample at
one frame every half-second, then the algorithm may select
every 157 frame as akeyframe. In at least some embodiments,
if frame rate information is not available, the keyframe selec-
tion algorithm may assume the video is taken at 30 frames per
second, or at some other rate. In at least some embodiments,
if the last frame in the video sequence is not in the keyframe
set, the frame is added as a keyframe. In at least some embodi-
ments, output of the keyframe selection algorithm may be a
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set of evenly spaced keyframes, e.g. every 15” frame from the
image sequence, which includes the first and last frames in the
image sequence. Note, however, that the next-to-last and last
keytrame may be closer than other pairs of keyframes in the
set, since the last keyframe may have been added in the last
step.

Note that the keyframe selection algorithm described
above is given as an example and is not intended to be limit-
ing. Other techniques may be used to select a set of keyframes
in some embodiments.

Candidate Initial Pairs

In at least some embodiments, the initialization technique
may select a set of candidate initial pairs from the keyframes.
In at least some embodiments, a candidate initial pairs selec-
tion algorithm may first select all the adjacent-2 keyframe
pairs. An adjacent-k keyframe pair may be defined as a pair of
keytframes that are k keyframes apart from each other. The
algorithm may then densely sample a first subset of the image
sequence that includes at least a portion of the keyframes. In
at least some embodiments, the size of this subset may be
computed as follows: if the total number of keyframes is less
than 8, all the keyframes are included; if the total number of
keyframes is less than 16, half of the keyframes may be
included; otherwise, one third of the keyframes may be
included.

In at least some embodiments, scores for all possible pairs
of'keyframes within the densely sampled subset may then be
computed.

Score Computation

In at least some embodiments, for each candidate initial
pair, two quantities: s and e may be computed as follows. All
of' the points that overlap the two frames in the candidate pair
are collected. A tentative reconstruction is performed, for
example using the algorithm described in the section titled
Initial pair reconstruction. In at least some embodiments, s
may be set to the number of inlier points. A homography may
be computed that best fits all the overlapping points. A
homography computation algorithm is described in the sec-
tion titled Homography computation. In at least some
embodiments, for each inlier point, a fitting residual is com-
puted. In at least some embodiments, the residuals are sorted,
and e is set to the residual value at a percentage (e.g., 80%) of
the number of points.

Homography Computation

In at least some embodiments, given a set of points in two
frames, a 4-point based RANSAC algorithm may be used to
compute an initial homography along with a set of points that
are consistent with the homography. These points may be
referred to as inlier points. Points that are not consistent with
a computed homography may be referred to as outlier points.
The initial homography may be refined using the inlier points
through nonlinear optimization. In at least some embodi-
ments, the nonlinear optimization refines the following cost
function:

N (AD)
argg;i,gz Wirg Wiy (Wi rg — Kol + iy — Ky Hxill?)
=l

where r,, and r, are the indices of the two frames and K r,, and
K r, are the associated camera intrinsic parameters. In at least
some embodiments, in the calibrated case, K ry and K r; are
the input values and in the uncalibrated case, a nominal value
may be used for the focal length that is the half of the sum of
the frame width and height.
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Initial Pair Selection

Atthis point, a score has been computed for each candidate
pair, and a best initial pair may be selected, for example as
follows. In at least some embodiments, among all the candi-
date pairs, the pairs are found whose e scores are larger than
a threshold S; (which may be computed based on video
dimension). From these pairs, the pair with the largest number
of point correspondences may be chosen. In the case of a tie
in terms of the number of correspondences, a pair with the
largest time span may be chosen from the tied pairs.

In at least some embodiments, if the previous step fails, e.g.
if all the candidate pairs have e scores lower than the threshold
S,, the candidate pairs that are more than S, number of frames
apart and whose numbers of point correspondences are larger
than a threshold S; are found. From these pairs, the pair with
the largest number of correspondences may be chosen.

In at least some embodiments, if the previous step fails, the
candidate pairs may be sorted according to the product of s
and e. The best pair may be compared to the second best pair,
for example as follows. Let s; and e, be the quantities com-
puted for the best pair and s, and e, be the quantities computed
for the second best pair. If s,e, is larger than Sss,e, and the
best pair is a subset of the second best pair in time, the second
pair may be used. Otherwise, the best pair is used.

Note that the initial pair selection algorithm described
above is given as an example and is not intended to be limit-
ing. Other techniques may be used to select a pair of initial
keyframes in some embodiments.

Initial Pair Reconstruction

An initial reconstruction may be computed from two given
images. These two images may, for example, be the best
initial pair selected in the section titled Initial pair selection,
or a candidate pair considered in the section titled Score
computation. Let r, and r; be the indices of the two images.
All of the point trajectories that overlap both images are
found. The algorithm is different according to the camera
intrinsic parameters.

Initial Pair Reconstruction, Calibrated Case

In the calibrated case, the camera intrinsic parameters are
known. Therefore, a Euclidean reconstruction can be per-
formed. In at least some embodiments, a S5-point based
RANSAC algorithm may be used to compute the initial rela-
tive rigid motion between the two images. The RANSAC
algorithm returns the essential matrix from r,, to r, along with
a set of points that are consistent with the essential matrix.
From the essential matrix, the overlapping points can be
triangulated. Points whose reprojection errors are larger than
a threshold may be discarded. The essential matrix may be
decomposed into the relative rotation and translation. There
are four solutions for the decomposition step. The solution
that has the largest number of consistent points may be cho-
sen.

In at least some embodiments, the reconstruction may be
further refined with a nonlinear optimization. In at least some
embodiments, the nonlinear optimization refines the follow-
ing cost function:

N (A2)
. 2
mgxgg; Wirg Wi Uiy = 7Kg XOII? +

Wi i, — 7Ky (RX; + THIP)
In at least some embodiments, the nonlinear optimization

problem may be solved according to a nonlinear optimization
technique, for example as described in the section titled
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Bundle adjustment technique. The nonlinear optimization
obtains a better estimate for the relative rotation R, translation
T, and three-dimensional (3D) points X,. However, this esti-
mate only uses inlier points estimated the previous RANSAC
step. In at least some embodiments, the estimates may be
improved by re-computing the inlier points and again per-
forming the nonlinear optimization. At least some embodi-
ments may iterate between the nonlinear optimization and
computing inlier points until a convergence test is met, or
until some other terminating condition is met.

In at least some embodiments, the rotation and translation
of the first camera (r,) may then be set to the identity trans-
formation (I, [0, 0, 0]7) and those of'the second camera (r,) to
(R, T). In at least some embodiments, r, and r, may be
retained, as they may be used in later optimizations.

Initial Pair Reconstruction, Uncalibrated Case

In the uncalibrated case, the camera intrinsic parameters
are not known. Although it may be possible to obtain a Euclid-
ean reconstruction using the assumptions presented in the
Introduction, in at least some embodiments, a projective
reconstruction from the two images may be performed. The
projective reconstruction may later be upgraded to a Euclid-
ean reconstruction using a self-calibration technique, for
example as described in the section titled Self-calibration.

In at least some embodiments, a 7-point based RANSAC
algorithm may be used to compute the fundamental matrix
between frames r, and r;. The algorithm gives the best fun-
damental matrix along with a set of inlier points that are
consistent with the fundamental matrix. The inlier points may
be used to compute a new fundamental matrix using a linear
algorithm. The fundamental matrix may then be converted
into a pair of 3x4 projection matrices using a canonical
decomposition technique. Using the two projection matrices,
the inlier points can be triangulated, for example using an
optimal triangulation algorithm.

In at least some embodiments, the two projection matrices
and 3D points may be refined using a nonlinear optimization.
In at least some embodiments, the nonlinear optimization
refines the following cost function:

N (A3)
argmin > Wiy iy (g = 7Ky XOI +
2=l

Wil — 7Ky (PEX; + PRI

where P* and P% are the left 3x3 and right 3x1 parts of P
respectively. In at least some embodiments, the nonlinear
optimization problem may be solved according to a nonlinear
optimization technique, for example as described in the sec-
tion titled Bundle adjustment technique. The nonlinear opti-
mization may obtain a better estimate for the projection
matrices and the 3D points. Similar to the calibrated case, the
nonlinear optimization only uses inlier points estimated in the
previous RANSAC/linear step. In at least some embodi-
ments, the estimates may be improved by re-computing the
inlier points and again performing the nonlinear optimiza-
tion. At least some embodiments may iterate between the
nonlinear optimization and computing inlier points until a
convergence test is met, or until some other terminating con-
dition is met.

In at least some embodiments, the rotation and translation
of the first camera (r,) may then be set to the identity trans-
formation (I, [0, 0, 0]7) and those of the second camera (r,) to
P. In at least some embodiments, r, and r; may be retained, as
they may be used in later optimizations.



US 9,083,945 B2

13

In at least some embodiments, all of the points that overlap
the two initial frames but that are not found to be inlier points
may be collected into a set referred to as outlier points. This
may be done in both the calibrated and uncalibrated cases.
Reconstruction Between the Initial Pair

In at least some embodiments, the initial reconstruction
may be enlarged by incorporating one or more frames
between the initial pair. In at least some embodiments, for
efficiency, only the keyframes that were selected in the sec-
tion titled Keyframe selection and that lie between the two
frames in the initial pair are considered. For each keyframe in
(to, 1), the proper motion representation may be computed.
This computation may be performed differently depending
on whether the input sequence is calibrated or uncalibrated.
Reconstruction Between the Initial Pair, Calibrated Case

In the calibrated case, a Euclidean reconstruction has
already been computed, and the camera intrinsic parameters
are known for each frame. Therefore, only the rotation and
translation needs to be computed. In at least some embodi-
ments, this may be performed as follows.

Let X,e[1°,i=1, 2, .. ., N be the inlier points in the initial
reconstruction. Let r be the index of the keyframe of interest.
In at least some embodiments, a 3-point based RANSAC
algorithm may be used to compute the rotation and translation
along with a set of inlier points. The estimates (R,, T,) may
then be refined via nonlinear optimization, using all the
points:

N (A4)

arg min 21 Wisllxi, — 7Ky (R X: + TP

Reconstruction Between the Initial Pair, Uncalibrated Case

In the uncalibrated case, a projective reconstruction was
computed. As a result, a 3x4 projection matrix needs to be
computed for each keyframe.

Let X,e[°,i=1, 2, . . ., N be the inlier points in the initial
reconstruction. Let r be the index of the keyframe of interest.
In at least some embodiments, a 6-point based RANSAC
algorithm may be used to compute an initial projection
matrix. The estimates may then be refined via nonlinear opti-
mization with a robust cost function, using all the points:

N (AS)
argmin Z‘ Winp iy — 7Ky (PEX; + PRY)

where p(+) is a robust function. In at least some embodiments,
the Huber function may be used as the robust function.
Initialization Refinement

Atthis point, aset ofkeyframes in the reconstruction, along
with a set of points that are consistent with the motion param-
eters (both calibrated and uncalibrated), have been computed.
However, the motion parameters and the points have not been
optimized. In initialization refinement, the motion param-
eters and the points may be optimized together to obtain a
better reconstruction. In at least some embodiments, a multi-
view bundle adjustment may be performed with all the cam-
eras and all the points (see details in the section titled Opti-
mization using multi-view bundle adjustment). After the
bundle adjustment, points whose reprojection errors are too
large may be removed (see details in the section titled Outlier
removal); these points are moved from the inlier set to the
outlier set. The points in the outlier set may then be examined
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to find points that are consistent with the motion parameters
(see details in the section titled Inlier recovery); these points
are moved from the outlier set to the inlier set. In at least some
embodiments, if the number of newly added inliers exceeds a
threshold, for example computed as a ratio of the number of
original points, an additional multi-view bundle adjustment
may be performed (see details in the section titled Optimiza-
tion using multi-view bundle adjustment).
Optimization Using Multi-View Bundle Adjustment

In at least some embodiments, at various points within the
general SFM technique, the parameters of a current recon-
struction may be optimized. An optimization technique that
may be used in at least some embodiments is described in the
section titled Bundle adjustment technique. In at least some
embodiments, there are four different multi-view bundle
adjustment cases for the general SFM technique: projective,
calibrated, uncalibrated (constant focal length) and uncali-
brated (varying focal length). An example cost function that
may be used in the bundle adjustment technique for each of
these cases is described below.
Multi-View Bundle Adjustment Cost Functions

This section describes the cost function for each bundle
adjustment case of the general SFM technique. In all the
cases, points may be represented as a vector in [ . However,
the cameras are represented differently in each case. At least
some embodiments may assume that there are M cameras in
the current reconstruction. To simplify the notation, the cam-
era indices may be assumed to be 1 to M.

In the projective case, each camera is represented as a 3x4
projection matrix. In at least some embodiments, the follow-
ing cost function may be optimized:

N M , (A6)
arggnip DU sl s = A K(PEX; + PR
D=L =1

=

where PjeD3 **is the 3x4 projection matrix for the j-image and
PjL and PjR are the left 3x3 part and the right 3x1 part of P,
respectively. K is the nominal intrinsic parameters of the j-th
camera. In at least some embodiments, in order to fix the
projective ambiguity, the (reference—0) camera may be fixed
to the identity projection matrix:

(AD)

[
(= =
_ O O
o o O

In at least some embodiments, the right 3x1 part of the
projection matrix of the (reference—1) camera may be fixed
to have a unit norm.

In the calibrated and uncalibrated cases, each camera may
be represented as a 3x3 rotation matrix, a 3x1 translation
vector and an intrinsic matrix. In at least some embodiments,
the following cost function may be optimized in the case of
calibrated cameras:

M (A8)
arg D gl = (KR X+ TP

J=1

1=

min
XiR;T 4

In at least some embodiments, the following cost function
may be optimized in the case of uncalibrated cameras with a
constant focal length:
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(A9)

1=

min
Xi.f R s

M
arg min > > il — (K FNRX; + TP
4=l =L

In at least some embodiments, the following cost function
may be optimized in the case of uncalibrated cameras with
varying focal lengths:

N M (A10)
i Sl s — (f X 312
g, min 353l <A R + T

J=1

In at least some embodiments, in order to fix the ambiguity,
the (reference—0) camera may be fixed to the identity rota-
tion matrix and a zero translation vector. In at least some
embodiments, the translation vector of the (reference—1)
camera may be fixed to a unit normal.

Optimization

In at least some embodiments, a bundle adjustment tech-
nique that may detect and remove poorly conditioned points
during bundle adjustment, for example as described in the
section titled Bundle adjustment technique, may be used in all
the cases. In at least some embodiments, the detected poorly
conditioned points may be removed from the reconstruction
and placed in the outlier set.

Outlier Removal

In at least some embodiments, a current reconstruction
may be improved by removing points that have relatively
large reprojection errors in one or more cameras. These points
may be referred to as outlier points. In at least some embodi-
ments, for each point in the inlier set, all the cameras on which
this point is visible are found, and the reprojection error at
each ofthese cameras is computed. In the projective case, the
reprojection error may be defined as

e~ (K AP X A+ (A11)

In the calibrated and uncalibrated cases, the reprojection
error may be defined as:

“xij_n(K}(Rj)(i+z}))“2
All the points whose reprojection error is larger than a
threshold on any camera may be collected. These points are
removed from the inlier set and placed into to the outlier set.
Inlier Recovery
In at least some embodiments, good points may be recov-
ered from the outlier set of a current reconstruction. In at least
some embodiments, for each point in the outlier set, all the
cameras on which this point is visible are found, and the
optimal coordinates are computed, assuming the cameras are
fixed. In at least some embodiments, the optimal coordinates
may be computed by optimizing the accumulative reprojec-
tion error in all the visible cameras. In at least some embodi-
ments, in the projective case, the following cost function may
be optimized:

(A12)

M , (AL3)
argmin ) il = 7(K (P X + PRI
e

In at least some embodiments, in the calibrated and uncali-
brated cases, the following cost function may be optimized:
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M (Al4)
argmin ) g Il = 7K (R;X; + T
e

In at least some embodiments, after the optimal coordi-
nates are obtained, the reprojection error for each camera may
again be computed. If all the errors are below a threshold, the
following matrix may be computed:

M (Al5)
D]
=

where J, is the Jacobian matrix of the j-th reprojection error
with respect to a point. In at least some embodiments, the rank
of'the matrix may be checked. If the point passes the test, the
point is moved from the outlier set to the inlier set.
Keytrame Reconstruction Loop

As indicated at 30 of FIG. 1 and at 106-110 of FIG. 2,
additional keyframes may be determined and reconstructed to
cover the image sequence. In at least some embodiments of
the general SFM technique, a keyframe reconstruction loop
may be used to enlarge the initial reconstruction to cover the
entire image sequence. The keyframe reconstruction loop
may add keyframes in an incremental and adaptive fashion,
adding one keyframe at a time until the entire video sequence
is covered. Note that this loop does not add all the frames in
the input image sequence. Instead, an adaptive algorithm is
used to select particular frame to add. In at least some embodi-
ments, the additional keyframes may be selected from the set
of keyframes that were previously selected (see the section
titled Keyframe Selection). In at least some embodiments, the
initial reconstruction may cover a portion of the image
sequence, and the additional keyframes may be added one at
a time at each end of the current reconstruction, working
outwards and alternating between ends.

FIG. 4 is a flowchart of an adaptive technique for iteratively
selecting and reconstructing additional keyframes to fully
cover the image sequence that may be used in a general
adaptive reconstruction algorithm, for example as imple-
mented by a general 3D SFM technique, according to at least
some embodiments.

At 300, if all keyframes have been processed, then the
adaptive technique for iteratively selecting and reconstruct-
ing additional keyframes is done. Otherwise, the technique
proceeds to element 310. As indicated at 310, a next keyframe
may be determined according to an adaptive selection tech-
nique. As indicated at 320, the determined keyframe may be
reconstructed and thus added to the current reconstruction. As
indicated at 330, a global optimization may be performed on
the current reconstruction. As indicated at 340, one or more
outlier points may be determined and removed from the
reconstruction. As indicated at 350, one or more inlier points
may be determined and recovered (added to the reconstruc-
tion). At 360, if the number of inlier points that were added
exceed a threshold, then a global optimization may again be
performed on the current reconstruction as indicated at 362.
At 370, in the calibrated case, the current reconstruction is
already a Euclidian reconstruction, so the technique returns to
element 300 to determine if there are more keyframes to be
processed. Otherwise, this is the uncalibrated case, and the
reconstruction is a projective construction. If there are
enough frames to perform self-calibration at this point, then
self-calibration may be performed as indicated at 372 to
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upgrade the projective reconstruction to a Euclidean recon-
struction. Results of the self-calibration may be analyzed to
determine if the results are acceptable. At 380, if the results of
the self-calibration are accepted, the technique returns to
element 300 to determine if there are more keyframes to be
processed. Otherwise, the technique reverts to the reconstruc-
tion prior to the self-calibration attempt as indicated at 382,
and the technique returns to element 300 to determine if there
are more keyframes to be processed.

The elements of the technique shown in FIG. 4 are dis-
cussed in more detail below.

Adaptive Keyframe Selection

In at least some embodiments, a next keyframe may be
selected in either of two directions: before and after the cur-
rent reconstructed set of keyframes. At least some embodi-
ments may alternate between the two directions. Without loss
of generality, a method for selecting the next keyframe after
the current reconstructed set is described; a method for select-
ing the next keyframe before the current reconstructed set
would be similar. FIG. 5 is a flowchart of a method for
selecting a next keyframe, according to at least some embodi-
ments. “Before” and “after” in this context may refer to tem-
porally before and temporally after the current reconstructed
set.

As indicated at 400, a direction is picked in which to select
a new keyframe. In at least some embodiments, the method
may start in either direction, and may then alternate between
the before and after directions. Without loss of generality, the
following assumes the direction picked is after the current
reconstructed set.

As indicated at 402, a candidate frame is selected that is
some temporal distance (e.g., a half second) or some distance
in frames (e.g., 15 frames) after the last frame in the current
reconstructed set. Let the index of this frame be r;. If r; is
beyond the end of the image sequence, r; may be setto the last
frame in the sequence if not already computed. In at least
some embodiments, if the last frame is already computed, the
method may quit, or alternatively may continue to process
frames in the other direction until done.

As indicated at 404, the number of overlapping points
between the candidate frame r;, and the last frame in the
current reconstructed set is computed. Let this number be s, .
At 406, if s, is below a threshold, the search is stopped and r,
is used as the next keyframe, as indicated at 420.

If'r, is not selected at 406, then as indicated at 408, a new
candidate frame is computed that is some temporal distance
(e.g., a half second) or some distance in frames (e.g., 15
frames) out from r, . Let the index of the new candidate frame
be r,. As indicated at 410, the number of overlapping points
between the new candidate frame and the last frame in the
reconstructed set is computed. Let the number be s,.

At412,if's,=s, orif s, is above athreshold, r, is settor, and
the process is repeated beginning at element 408. Otherwise,
the search is stopped and r, is used as the next keyframe, as
indicated at 420.

The above method may increase the distance between the
current reconstructed set and the next keyframe, but does not
decrease the distance. However, it may be useful to be able to
decrease the distance because the method may go out too far
and there may not be enough overlapping points to support
the keyframe computation (details are given in the section
titled Keyframe reconstruction). Therefore, in at least some
embodiments, a technique may be performed to decrease the
distance between the current reconstructed set and the next
keytrame, if necessary. FIG. 6 is a flowchart of a method to
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decrease the distance between the current reconstructed set
and the next keyframe that may be used in at least some
embodiments.

As indicated at 450, a keyframe candidate may be selected.
In at least some embodiments, the method as illustrated in
FIG. 5 may be used to select the keyframe candidate. Letr, be
the index of the selected keyframe candidate.

As indicated at 452, keyframe reconstruction may be per-
formed on r,. In at least some embodiments, an algorithm as
described in the section titled Keyframe reconstruction may
be performed on keyframe candidate r, to perform the key-
frame reconstruction.

At 454, if the keyframe reconstruction is successful, the
method is done, and keyframe candidate r, is accepted, as
indicated at 470. Otherwise, at 456, if the distance between r,
and the current reconstruction is 1, the method quits and
failure is declared. Otherwise, if the distance between r, and
the current reconstruction is greater than 1 at 456, the current
keytrame is set to a frame between r, and the current recon-
struction (e.g., the middle frame) as indicated at 458, r, is set
to the current keyframe as indicated at 460, and the method
returns to 452 with the current frame as r;.

Keytrame Reconstruction

This section describes methods for computing a new key-
frame, for example a frame as selected in the previous section
(Adaptive keyframe selection), according to some embodi-
ments. In at least some embodiments, there may be different
methods for keyframe reconstruction that depend on whether
the current reconstruction is Fuclidean or projective, and
whether the focal length is constant or variable. These meth-
ods may be referred to as the calibrated algorithm or method
and the projective algorithm or method. In at least some
embodiments, the calibrated algorithm may be applied to
either a calibrated sequence, or to an uncalibrated sequence
where self-calibration has taken place and the focal length is
constant over the entire sequence. In at least some embodi-
ments, the projective algorithm may be applied to either an
uncalibrated sequence where self-calibration either has not
taken place or has failed or to an uncalibrated sequence with
a varying focal length.

Keyframe Reconstruction, Calibrated Case

In at least some embodiments, a calibrated algorithm may
be applied to either a calibrated sequence orto an uncalibrated
sequence where self-calibration has taken place and the focal
length is constant over the entire sequence. In this case, either
the correct focal length or a good estimate for the focal length
(because it is constant and there are estimates from other
frames) is available. In at least some embodiments, to make
the calibrated algorithm more robust, the focal length may be
fixed, and only the rotation and translation may be estimated
(the reconstruction is already Euclidean).

Le the index of the new keyframe be s. All the points from
the inlier set of the current reconstruction that are visible in
the new keyframe s are found. In at least some embodiments,
a 3-point based RANSAC algorithm may be used to compute
an initial rotation and translation. The initial rotation and
translation may be refined with a nonlinear optimization tech-
nique. In at least some embodiments, the nonlinear optimiza-
tion refines the following cost function:

v (A16)
: . o . 2
arg in ;w‘,xnxw AK (R X + T
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The nonlinear optimization may provide a better estimate
for the rotation and translation. A next step is to add new
points. In at least some embodiments, the closest frame to s
from the current reconstruction may be found. Let the index
of'this frame be t. All of the points that overlap both frames s
and t but are not in either the inlier set or the outlier set of the
current reconstruction may be found. For each point, its 3D
coordinates may be triangulated using the newly estimated
motion parameters for keyframe s and the motion parameters
for keyframe t from the current reconstruction. Successfully
triangulated points are added to the inlier set; any points that
cannot be triangulated are added to the outlier set.
Keytrame Reconstruction, Projective Case

In the projective case, the reconstruction can be either
projective or Euclidean without a reasonable estimate for the
focal length of the new keyframe. Therefore, the projection
matrix of the new keyframe may be estimated. The algorithm
is similar to the calibrated case.

Let the index of the new keyframe be s. All the points from
the inlier set of the current reconstruction that are visible in
the new keyframe s are found. In at least some embodiments,
a 6-point based RANSAC algorithm may be used to compute
an initial rotation and translation. The initial rotation and
translation may be refined with a nonlinear optimization tech-
nique. In at least some embodiments, the nonlinear optimiza-
tion refines the following cost function:

3 2 (AL7)
argn}}in;: Wi.sp(x; ; — (K (PEX; + PRY)

where K is the nominal intrinsic parameters of frame s and
p(*) is a robust function. In at least some embodiments, the
Huber function is used as the robust function. The nonlinear
optimization may provide a better estimate for the projection
matrix. A next step is to add new points. In at least some
embodiments, the closest frame to s from the current recon-
struction may be found. Let the index of this frame be t. All of
the points that overlap both frames s and t but are not in either
the inlier set or the outlier set of the current reconstruction
may be found. For each point, its 3D coordinates may be
triangulated using the newly estimated projection matrix for
keytrame s and the projection matrix for keyframe t from the
current reconstruction. Successfully triangulated points are
added to the inlier set; any points that cannot be triangulated
are added to the outlier set.

In at least some embodiments, in the case when the recon-
struction is projective, the estimated projection matrix is
taken. However, in the case when the reconstruction is
Euclidean, the projection matrix P, may be decomposed into
an intrinsic matrix K';, a rotation matrix and a translation
vector as follows:

P=hK'\[R,T]
At least some embodiments may use R, and T, for the
rotation and translation of the new keyframe. In at least some

embodiments, K=K K'_ is computed, and the focal length is
set to be:

(A18)

1
k=3

(K(L, 1) + K(2,2).
Keytframe Reconstruction, Refinement

In at least some embodiments, the newly reconstructed
keyframe and the newly added points may be optimized
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together with the existing frames and points (global optimi-
zation). A goal is to obtain better estimates for all of the
parameters jointly. In at least some embodiments, a multi-
view bundle adjustment is performed with all the cameras and
all the points (see details in the section titled Optimization
using multi-view bundle adjustment). After the bundle adjust-
ment, points whose reprojection errors are too large may be
removed (see details in the section titled Outlier removal);
these points may be moved from the inlier set to the outlier
set. All of the points in the outlier set may then be searched to
find points that are consistent with the motion parameters (see
details in the section titled Inlier recovery); these points may
be moved from the outlier set to the inlier set. If the number of
newly added inliers exceeds a threshold, which may be com-
puted as a ratio of the number of the original points, an
additional multi-view bundle adjustment may be performed.
Self-calibration

In at least some embodiments, a self-calibration technique
may be applied to upgrade a reconstruction from projective to
Euclidean (metric). Note that self-calibration may not be
applied to the calibrated case because the reconstruction is
already metric. Once the reconstruction is Euclidean, self-
calibration does not need to be performed. In at least some
embodiments, self-calibration is only performed when the
number of cameras in the current reconstruction reaches a
certain threshold. The section titled Nonlinear Self-Calibra-
tion Technique describes a self-calibration technique that
may be used in at least some embodiments. This section
describes a few extra steps that may be taken to ensure that the
results of the self-calibration technique are good and thus
accepted.

FIG. 7 is a flowchart of a self-calibration technique that
may be applied in the adaptive technique for iteratively select-
ing and reconstructing additional keyframes, according to at
least some embodiments. In at least some embodiments,
before self-calibration, a total reprojection error is computed,
as indicated at 500. Self-calibration is then performed, as
indicated at 510. In at least some embodiments, a self-cali-
bration technique as described in the section titled Nonlinear
Self-Calibration Technique may be used. After self-calibra-
tion, a global optimization of the reconstruction may be per-
formed, as indicated at 520. In at least some embodiments, a
multi-view bundle adjustment technique as described in the
section titled Optimization using multi-view bundle adjust-
ment may be used. As indicated at 530, inlier points may be
determined and recovered, for example as described in the
section titled Inlier recovery. As indicated by 540, in at least
some embodiments, the method may iterate between adding
inliers and global optimization (e.g., multi-view bundle
adjustment) until either no new inlier is added or the iteration
count reaches a pre-defined threshold. At 540, when done, a
new total reprojection error may be computed and compared
to the total reprojection error that was previously computed at
500, as indicated at 550. At 560, the results of the comparison
may be used to determine if the self-calibration was success-
ful. In at least some embodiments, if the new total reprojec-
tion error is no more than a pre-defined factor of the total
reprojection error computed before self-calibration, the self-
calibration result is accepted as indicated at 570. Otherwise,
the self-calibration step has failed, and the reconstruction is
reverted back to the state before self-calibration, as indicated
at 580.

Opt-keyframe Reconstruction

As indicated at 40 of FIG. 1 and at 112 of FIG. 2, an
opt-keyframe technique may be applied to a reconstruction
for an image sequence to determine and reconstruct optimi-
zation keyframes to improve the quality of the reconstruction.
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In the opt-keyframe technique, additional frames, referred to
herein as “opt-keyframes”, are determined and added to the
reconstruction, and the reconstruction is again globally opti-
mized. By adding more optimized frames and more opti-
mized points, the quality of the reconstruction may be
improved.

FIG. 8 is a flowchart of a technique for selecting and
reconstructing optimizing keyframes (which may be referred
to as opt-keyframes) that may be used in a general adaptive
reconstruction algorithm, for example as implemented by a
general 3D SFM technique, to provide a better reconstruc-
tion, according to at least some embodiments. As indicated at
600, opt-keyframes may be determined and added to the
reconstruction so that the total number of frames in the recon-
struction satisfies a threshold. As indicated at 610, one or
more bad (outlier) points may be determined according to one
or more criteria and removed from the reconstruction. As
indicated at 620, one or more good (inlier) points may be
determined and recovered. As indicated at 630, bad (outlier)
points may again be determined according to one or more
criteria and removed from the reconstruction. As indicated at
640, the reconstruction may then be globally optimized.

The elements of the technique shown in FIG. 8 are dis-
cussed in more detail below.

In at least some embodiments, given the current recon-
struction, a set of opt-keyframes may be computed that are
uniformly spread in the entire sequence so that the total num-
ber of frames reaches a pre-defined threshold. The camera
parameters for the newly selected opt-keyframes may be
computed, for example using a method described in the sec-
tion titled Non-keyframe reconstruction.

Opt-keyframe Reconstruction Refinement

After the opt-keyframes are determined and added to the
reconstruction, the current reconstruction may be refined (el-
ements 610 through 640 of FIG. 8). In at least some embodi-
ments, obviously bad points may be removed from the recon-
struction as follows. Points that are either too close to the
cameras or behind the cameras may be removed. Next, the
median depth of all the points is computed, and points whose
depths are more than a factor of the median depth may be
removed. Finally, points whose reprojection errors are larger
than a threshold may be removed.

After the points in the reconstruction are cleaned by remov-
ing bad points as described above, the median distance
between all the adjacent pairs of cameras in the current recon-
struction may be computed. All of the point trajectories that
are not in the inlier set or the outlier set are searched. For each
of these point trajectories, all the cameras where this point is
visible are found. The maximum distance between these cam-
eras is computed and compared against a threshold that is
computed based on the median camera distance. If the maxi-
mum distance is larger than the median distance, the point is
reconstructed using an algorithm similar to the one described
in the section titled Inlier recovery.

In at least some embodiments, these reconstructed points
are not added directly to the reconstruction. Instead, after all
the new points are considered, bad points are again removed
using the median thresholding technique described above,
and the remaining points are added to the reconstruction.

In at least some embodiments, after removing bad points
and recovering good points, a global optimization of the
reconstruction may be performed, for example according to
the multi-view bundle adjustment technique described in the
section titled Optimization using multi-view bundle adjust-
ment, to further refine the parameters.

Adding the opt-keyframes and inlier points may result in
additional, and possibly shorter, point trajectories being
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included in the reconstruction, thus providing a better recon-
struction that may be more suited for later operations that may
be applied to the image sequence, such as plane fitting.
Non-keyframe Reconstruction

As indicated at 50 of FIG. 1 and at 114 of FIG. 2, non-
keytrames (keyframes that have not yet been included in the
reconstruction) may be reconstructed. In at least some
embodiments of a non-keyframe reconstruction technique,
all of the frames in the input sequence that are not included in
the current reconstruction may be reconstructed. These
frames may be referred to as non-keyframes. In at least some
embodiments, all the frames in the reconstruction that include
both keyframes and opt-keyframes are first reconstructed. In
at least some embodiments, the non-keyframe reconstruction
technique may work on adjacent pairs of keyframes until all
the pairs of keyframes have been processed. In at least some
embodiments, for each pair, all of the 3D points that are
visible in both frames are collected. These points may then be
used to compute the parameters for a camera between the two
frames, for example as described below.

Let r be the camera of interest. In at least some embodi-
ments, the non-keyframe reconstruction technique may first
interpolate the motion parameters along with the intrinsic
parameters. In at least some embodiments, K, R, and T may
be further optimized by optimizing a cost function. In at least
some embodiments, in the calibrated case and the uncali-
brated case with a constant focal length, the cost function may
be:

N (A19)
3 . L . 2
arg oin 21 il — 7K (R X; + T

In atleast some embodiments, in the uncalibrated case with
a varying focal length, the cost function may be:

N (A20)

arg min Y llx j - 2(K(F)R X, + TP
1

SrRe. Ty

i=

Inatleast some embodiments, each frame between a pair of
keytrames is computed independently of the other frames,
and each pair of keyframes is processed independently of the
other pairs of keyframes.

Final Processing

As indicated at 60 of FIG. 1 and at 116 of FIG. 2, final
processing may be performed. In at least some embodiments,
there may be two steps in the final processing.

In at least some embodiments, the largest contiguous sub-
set of frames in the reconstruction may be found. All the
frames that are not in this subset, along with all the points that
are not visible in any of the frames in the subset, may be
removed from the reconstruction.

In at least some embodiments, optionally, all of the frames
and points in the reconstruction may be optimized (global
optimization). In at least some embodiments, this optimiza-
tion may be performed according to the refinement process
described in the section titled Opt-keyframe reconstruction
refinement to optimize all the points and cameras together.
Output

As indicated at 118 of FIG. 2, at least the camera intrinsic
parameters and the Euclidean motion parameters for the
images in the input image sequence may be output. Note that



US 9,083,945 B2

23

the reconstruction may have been cropped to the largest con-
tiguous set of frames, as described in section A11.
Example Applications

The output (at least the camera intrinsic parameters and the
Euclidean motion parameters for the images in the input
image sequence) of the general SFM technique described
above may be used in a wide range of applications in different
domains including 3D image-based modeling and rendering,
video stabilization, panorama stitching, video augmentation,
vision based robot navigation, human-computer interaction,
etc.

FIGS. 10A through 10F are six example frames extracted
from a video sequence in which results of an SFM technique
as described herein were used to insert a 3D object into a
video sequence, according to at least some embodiments. In
these Figures, a 3D object (the word “DOG”) has been
inserted into the video sequence using the camera intrinsic
parameters and the Euclidean motion parameters determined
from the video sequence using an embodiment of the general
SFM technique as described herein. Note that motion of the
frames in the input video sequence includes non-zero rotation
and translation components, and that the scene is not domi-
nated by a single plane. FIG. 10A shows a first frame at or
near the start of the video (time 00:00:00).

FIG. 10B shows a frame at around one second, FIG. 10C
shows a frame at around two seconds, FIG. 10D shows a
frame at around three seconds, FIG. 10E shows a frame at
around five seconds, and FIG. 10F shows a frame at around
seven seconds. Note how the inserted 3D object (the word
“DOG”) moves with the motion of the camera to maintain a
natural and believable positioning in the frames.

Nonlinear Self-Calibration Technique
Introduction

Embodiments of a nonlinear self-calibration technique are
described. In contrast to conventional self-calibration meth-
ods that use linear or semi-linear algorithms, embodiments of
the self-calibration technique may use a nonlinear least
squares optimization technique to infer the parameters. In
addition, a technique is described for initializing the param-
eters for the nonlinear optimization. Embodiments of the
self-calibration technique may be robust (i.e., may generally
produce reliable results), and can make full use of prior
knowledge if available. In addition, embodiments of the non-
linear self-calibration technique work for both constant focal
length and varying focal length.

Embodiments of the nonlinear self-calibration technique
may use prior knowledge of the camera intrinsic parameters
(e.g., focal length). For instance, if the user knows the focal
length or if the focal length is known through metadata of the
captured images in the sequence, the known focal length may
be used in the formulation to provide reliable calibration
results (e.g., motion parameters). However, having such prior
knowledge would not make much difference in most conven-
tional linear self-calibration methods. Embodiments of the
nonlinear self-calibration technique may be robust and effi-
cient when compared to conventional self-calibration tech-
niques. In particular, the nonlinear optimization problem that
is solved may be sparse and may be implemented efficiently.

Embodiments of the nonlinear self-calibration technique
may allow a metric (Euclidian) reconstruction to be obtained
where otherwise only a projective reconstruction could be
obtained. A projective reconstruction may be unfit for many
practical applications. For instance, it is difficult if not impos-
sible to insert a virtual object into a moving video using a
projective reconstruction (see FIGS. 10A through 10F for an
example of inserting a virtual object (the 3D word “DOG”)
into a video sequence).
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FIG. 9 is a high-level flowchart of a nonlinear self-calibra-
tion technique, according to at least some embodiments. As
indicated at 700, N input images and a projective reconstruc-
tion for each image may be obtained. As indicated at 710, at
least two sets of initial values may be determined for an
equation to be optimized according to a nonlinear optimiza-
tion technique to generate a metric reconstruction for the set
of N images. As indicated at 720, the equation may then be
optimized using each set of initial values according to the
nonlinear optimization technique. As indicated at 730, the
result with a smaller cost may be selected. As indicated at 740,
the metric reconstruction is output. In at least some embodi-
ments, the output may include, but is not limited to, focal
length, rotation, and translation values for the N images.

The elements of FIG. 9 are discussed in more detail below.
Self-calibration

Embodiments of the nonlinear self-calibration technique
may address a problem in camera motion estimation—deter-
mining the intrinsic parameters of the cameras such as focal
length. There are two general methods for obtaining intrinsic
camera parameters from images. One method is conventional
calibration, where the camera intrinsic parameters are deter-
mined from one or more captured images of a known calibra-
tion target or known properties of the scene such as vanishing
points of orthogonal directions. The other method is generally
referred to as self-calibration. In a self-calibration method,
the camera intrinsic parameters are determined directly from
constants on the internal and/or external parameters. Self-
calibration is generally more useful in practice because a
calibration target or known properties of the scene are typi-
cally not available.

Nonlinear Self-Calibration Details

Assume N input images and that for each image a 3x4

projection matrix has been obtained:

------

A goal of self-calibration is to find a 4x4 matrix He[T***
such that P,H is a metric reconstruction. Mathematically, this
means that there exists a set of upper triangular matrices
K,e[**® with K,(2, 1)=K,(3, 1)-K,(3, 2)=0, rotation matrices
R,eSO(3), and translation vectors T,e[° such that:

PHOK/R,TJ, i=12,... N. (B1)

where ~ indicates equality up to a scale. Note that solving T,
jointly with K, and R, does not add any additional constraint
compared to solving K, and R, alone. In other words, equation
(B1) is equivalent to the following reduced version where T,
has been dropped:

PHKR,i=1,2,... N

where H,e[1** is the left 4x3 part of H. Further note that
there is a generic ambiguity on R, in the sense that if (H,, R,)
satisfies equation (B2), then (H;R, R,R) satisfies the same
equation where R is an arbitrary 3x3 rotation matrix. Without
loss of generality, R, is chosen to be the identity rotation. Also
note that P, contains a projective ambiguity. In order to at least
partially fix the ambiguity, P, may be chosentobe[I, 0]. Inthe
following discussion, it is assumed that P, has this expression.
If K, is allowed to vary arbitrarily, the problem is not
well-defined. For instance, for any given H e[1***, a decom-
position similar to the QR decomposition may be performed
to find an upper triangular matrix and a rotation matrix that
satisfy the constraint. Embodiments of the self-calibration
technique may exploit the assumptions on K, to arrive at
interesting solutions. In embodiments the following assump-
tions may be made about the camera intrinsic matrix K;:

®2)
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The principal point is known, which is typically but not
necessarily at the center of the image. The principal
point may be different for different images.

The pixel skew is O (the pixel grid is perpendicular).

The pixel aspect ratio is known.

Note that embodiments of the self-calibration technique
can be generalized to cases where different assumptions are
made. Under these assumptions, the effect of principal point,
pixel skew, and pixel aspect ratio on both P, and K, can be
undone, and a simpler formulation may be derived:

PH diag{f;;,1}R, i=1,2, .. . ,N. (B3)

where {, is the focal length of the i-th camera, P,e[1>** is P,
modulo the principal point, pixel skew, and pixel aspect ratio,
and diag{a, b, ¢} is a 3x3 diagonal matrix:

a (B4)
diag{a, b, c}D\ b ]
c

Equation (B3) may be examined for the case of i=1. Since
P,=[1, 0] and R, =], the following may be obtained:

HyOdiag{fi/i.1}, B35)

where H, , is the top 3x3 part of H, . Without loss of generality,
the following may be chosen:

H, =diag{f,.f1,1}. (B6)

Note that in general, P, is noisy, i.e., there does not exist a
solution for equation (B3). By choosing H, ; with this particu-
lar form, a bias towards the first image is created since the
equation is always satisfied for i=1.

Equation (B3) becomes:

P, diag{f, f1,1 }+PH, [diagR;, i=12, ..., N. (B7)

where P, and P, are the left 3x3 part and the right 3x1 part of
P,, respectively and H,, is the bottom 1x3 part of H,. An
auxiliary variable A, may be introduced to convert the equality
up to a scale equation (B7) into an exact equality as follows:

P, diag{f) /1,1 }+PpH, =hdiag{fi /1,1 }R; i=1,2, ...

N (B8)

The self-calibration problem becomes solving H,, and A,
f,R,fori=1,2, ..., N in equation (B8).
Prior Knowledge on Focal Length

Some prior knowledge on the focal length may be
assumed. For instance, if the lens and camera that are used to
capture the image are known, an approximate focal length can
be computed from the focal length of the lens and parameters
of'the camera sensor. The lens information may, for example,
be obtained from image/video metadata. In at least some
embodiments, if the lens and/or the camera are not known,
since many if not most scenes where people need camera
tracking are captured using relatively wide-angle lenses, it
may be assumed that the focal length is in the range from 24
mm to 35 mm (35 mm equivalent). A discussion of extending
the self-calibration technique to the case where there is no
prior knowledge of the focal length in the section titled No
prior knowledge on focal length.

Two cases are presented below: constant focal length for
the entire sequence, and varying focal length.
Constant Focal Length

In the case of constant focal length, f; is assumed to be the
same for all the images, and may be denoted by f. The self-
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calibration problem may be solved according to an optimiza-
tion process. In at least some embodiments, the following cost
function may be optimized:

, (B9

arg min
fRT;

N

E Hld‘ {1 11}(?@1‘ {f, £, 1} + Poth) = R
—diagy —, —, 1{(Pydiaglf, £, ; - R

. X gff 1d1ag 24121

A reason for using this type of cost function is that R, has
components at the same scale (between -1 and 1), and the
summation over i makes sense. Since equation (B9) is of the
form of nonlinear least squares, in at least some embodiments
the Levenberg-Marquardt algorithm may be used to optimize
the cost.

In order to use the Levenberg-Marquardt algorithm, initial
values for all the unknowns are needed. Prior knowledge on
the focal length may be used here. Let T be the approximate
focal length. Good initial values for H,,, R, and A, are also
needed. A conventional algorithm for computing H,, exists.
However, the conventional algorithm only gives a partial
solution. More precisely, there are two solutions for H,, and
the conventional algorithm only computes one of the two
solutions. This makes the conventional algorithm unsuitable
for the nonlinear optimization problem presented herein
because the conventional algorithm may pick the wrong solu-
tion for H,, from the two solutions, and a nonlinear optimi-
zation starting from the wrong solution may not converge to
the correct solution for the nonlinear optimization problem.

The following describes an algorithm for computing the
two solutions for H,, that may be used in at least some
embodiments. A pair of projection matrices is chosen, one of
which is the first image. The choice of the other projection
matrix may be important. In at least some embodiments, the
camera that is farthest away from the first image in time may
be chosen. Without loss of generality, assume (P, P,) are
chosen. The following is computed:

(B10)

There exists a rotation matrix R, such that:

R.=[I1511:0,0]" (B11)

The following is computed:

11 4 ®12)
W= Rxdlag{?, + 1}P21d1ag{f, .1

The two solutions for H,, are given by:

(B13)

Wy x W3
[1Wsl )
Wox Ws
Wl )

[EYAMS

! (W +
o2\

where W, W, and W, are the rows of W: W/=[W , W,
W,]%. It can be verified that the two solutions are both valid.
The two solutions correspond to the choice of the sign of P,.
Since P, is up to a scale, which can be either positive or
negative, two solutions for H,, are obtained
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In at least some embodiments, R, and A, may be computed
as follows. For a given H,,, a QR decomposition may be
computed as follows:

N S U PO N R B14)
diagy —, —, 1 (P;ldlag{f, I8 1}+P;2H21} = A;R;
rr

where A, is a 3x3 upper triangular matrix and f{i is a 3x3
rotation matrix. In at least some embodiments, the technique
sets A,=A(3, 3) and uses R, as the initial value for R,.

The above provides initial values for H,,, R,, and A,. Equa-
tion (B9) may be optimized, for example using a Levenberg-
Marquardt technique. Since there are two solutions for H,;,
there are two sets of initial values. In at least some embodi-
ments, two optimizations are performed, one using each set of
initial values. The result with the smaller cost may be chosen.
Note that equation (B9) has a sparse form, and can be opti-
mized efficiently using a sparse solver.

Varying Focal Length

In the varying focal length case, the focal length changes
for each image. In at least some embodiments, a generaliza-
tion of the algorithm in the section titled Constant focal length
may be used for the varying focal length case. Again, without
loss of generality, P, and P, are chosen to compute H,,. The
following is computed:

1 ®15)
n= dlag{z, I 1}P22

and the rotation matrix R is found such that:

R=/]5].0,00%. (B16)

The following is computed:

1
& HPudieelfi 1

1 B17
W= Rxdiag{ 7 s ®L17)
2

The two solutions for H,, are given by:

(B18)

Wy x W
Wl )
W, x W
[1Wsl )

1 (W
[T

1
- +
||z2||( !

In at least some embodiments, once H,, is computed, R,
and A, can be computed using the same algorithm presented in
the section titled Constant focal length. However, the optimi-
zation may be modified to optimize over f; as well:

arg (B19)

2

N
. L. 11 — _
f‘rr’%‘u%_‘ H/I_;dlag{z’ 7 1}(Pi1dlag{f1, fi, B+ PoHy) - R

No Prior Knowledge on Focal Length

Embodiments of the nonlinear self-calibration technique
as described herein may be robust to error in the initial esti-
mate of the focal length. The optimization tends to converge
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even if the focal length estimate is off by as much as 20%.
Since in practice accurate prior knowledge may often not be
available or attainable, this robustness is advantageous. The
robustness of the nonlinear self-calibration technique also
suggests a way to handle cases where there is no prior knowl-
edge on the focal length. Note that the focal length has a
bounded domain in []. In at least some embodiments, a brute-
force search may be used. Let f,,, and . be the minimum
and maximum focal length. In the constant focal length case,
the range may be divided into M bins as follows:

(B20)

1 o
fi= fm;nexp(’—logf

=12, .M
TRl SRLLE

Each f;, may be used as the initial value for f, and the
optimization may be performed. The result with the least cost
may be returned.

For the varying focal length case, the same range may be
divided into M bins, and, for all possible pairs of (f,, {,) (where
i=1.2,...,Mandj=1,2,...,M, as the initial values for (],
f,)), the optimization may be performed. The result with the
least cost may be returned.

In contrast to conventional self-calibration techniques,
embodiments of the self-calibration technique described
herein find two solutions to H,, that correspond to the two
different signs of P,. Finding only one solution, as is done in
conventional self-calibration techniques, may result in the
wrong solution being picked for at least the reason that the
sign of P, is inconsistent. In addition, embodiments of the
self-calibration technique described herein employ a nonlin-
ear optimization to further refine the solution. This makes the
self-calibration technique robust to errors in the initial guess
of the focal length.

Bundle Adjustment Technique

In computer vision, bundle adjustment is the task of refin-
ing a reconstruction for a set of images or frames to obtain
jointly optimal structure and motion parameter estimates.
Optimal as used here indicates that the parameter estimates
are found by minimizing some cost function that quantifies
the model fitting error, while jointly as used here means that
the solution is simultaneously optimal with respect to both
structure and motion variations. The name “bundle adjust-
ment” refers to the “bundles” of light rays leaving each three-
dimensional (3D) point and converging on each camera cen-
ter, which are then adjusted optimally with respect to both
point and camera parameters. Bundle adjustment techniques
may be employed in many computer vision techniques or
workflows involving the processing of multiple images or
frames, including but not limited to structure from motion
(SFM) techniques.

A bundle adjustment technique is described that may
detect and remove poorly conditioned points during bundle
adjustment. The bundle adjustment technique may include a
method to detect poorly conditioned points during the bundle
adjustment process or portion of a feature-based 3D recon-
struction pipeline, for example one or more of the reconstruc-
tion techniques such as the general 3D SFM technique
described herein or a rotation-based SFM technique. Once the
poorly conditioned points are detected, the poorly condi-
tioned points are removed from the bundle adjustment pro-
cess. The technique may detect and remove the poorly con-
ditioned points before optimization, and therefore may help
to ensure that the optimization is successful.

The technique for detecting and removing poorly condi-
tioned points may be employed at each application of bundle
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adjustment in a feature-based 3D reconstruction pipeline. The
detection technique may be performed, and detected poorly
conditioned points may be removed, prior to the optimization
portion of the bundle adjustment technique. In at least some
embodiments of the bundle adjustment technique, one or
more structures for the optimization may be set up or initial-
ized according to an input reconstruction. The detection tech-
nique may be applied to detect poorly conditioned points, and
the poorly conditioned points may be collected and removed
or marked so that they are not used during the optimization.
The optimization may then be performed using only the well-
conditioned points. Bundle adjustment may generally be an
iterative optimization process, and thus the optimization out-
put may be used as input to another iteration in which setup,
the detection technique and point removal, and optimization
are again performed. After bundle adjustment has completed,
an optimized reconstruction that contains jointly optimal
structure and motion parameter estimates may be output.

In at least some embodiments of the bundle adjustment
technique, the Levenberg-Marquardt (L-M) algorithm may
be used in bundle adjustment. In particular, a sparse bundle
adjustment implementation using the [.-M algorithm may be
used in some embodiments. The detection technique can be
applied at each iteration of the [.-M algorithm (i.e., at every
new Jacobian computation) to detect and remove poorly con-
ditioned points prior to optimization at the current iteration of
the L-M algorithm.

In a sparse bundle adjustment implementation using the
L-M technique, a Jacobian matrix may be computed for an
input reconstruction, and a 3x3 matrix V, may be computed
for all the points. The rank of V, for all the points may then be
checked. If'V, for a given point does not have full rank (rank
3), the matrix is rank-deficient and the corresponding point is
declared or marked as poorly conditioned. All of the poorly
conditioned points are collected and removed together. The
bundle adjustment optimization can then be performed using
the set of remaining, well-conditioned points. In at least some
embodiments, detecting rank deficiency can be done numeri-
cally by checking the distribution of the eigenvalues of matrix
V..

Example Implementations

Some embodiments may include a means for generating
structure and motion for a set of images or frames according
to the SFM techniques described herein. For example, an
SFM module may receive input specifying a set of point
trajectories and generate as output structure and motion for a
set of images or frames as described herein. The SFM module
may in some embodiments be implemented by a non-transi-
tory, computer-readable storage medium and one or more
processors (e.g., CPUs and/or GPUs) of a computing appa-
ratus. The computer-readable storage medium may store pro-
gram instructions executable by the one or more processors to
cause the computing apparatus to perform one or more of the
techniques as described herein. Other embodiments of the
module(s) may be at least partially implemented by hardware
circuitry and/or firmware stored, for example, in a non-vola-
tile memory.

Embodiments of the module may, for example, be imple-
mented as a stand-alone application, as a module of an appli-
cation, as a plug-in or plug-ins for applications including
image or video processing applications, and/or as a library
function or functions that may be called by other applications
such as image processing or video processing applications.
Embodiments of the module may be implemented in any
image or video processing application, or more generally in
any application in which video or image sequences may be
processed. Example applications in which embodiments may
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be implemented may include, but are not limited to, Adobe®
Premiere® and Adobe® After Effects®. “Adobe,” “Adobe
Premiere,” and “Adobe After Effects™ are either registered
trademarks or trademarks of Adobe Systems Incorporated in
the United States and/or other countries. An example module
that may implement one or more of the SFM techniques as
described herein is illustrated in FIG. 11. An example com-
puter system on which the module may be implemented is
illustrated in FIG. 12. Note that the module may, for example,
be implemented in still cameras and/or video cameras.

FIG. 11 illustrates a module that may implement an SFM
technique as illustrated in the accompanying Figures and
described herein, according to at least some embodiments.
Module 1700 may, for example, receive an input image
sequence, or alternatively a set of point trajectories for the
images in a sequence. Module 1700 then applies one or more
of the techniques as described herein to generate structure,
camera parameters, and motion. In at least some embodi-
ments, module 1700 may obtain point trajectories for the
sequence, as indicated at 1710. Module 1700 may then per-
form initialization to determine and reconstruct initial key-
frames, as indicated at 1720. Module 1700 may then deter-
mine and reconstruct additional keyframes to cover the video
sequence, as indicated at 1730. Module 1700 may then deter-
mine and reconstruct optimization keyframes, as indicated at
1740. Module 1700 may then reconstruct non-keyframes, as
indicated at 1750. Module 1700 may then perform final pro-
cessing, as indicated at 1760. In at least some embodiments,
module 1700 may generate as output estimates of camera
parameters and camera motion for the image sequence.
Example Applications

Example applications of the SFM techniques as described
herein may include one or more of, but are not limited to,
video stabilization, video augmentation (augmenting an
original video sequence with graphic objects), video classi-
fication, and robot navigation. In general, embodiments of
one or more of the SFM techniques may be used to provide
structure and motion to any application that requires or
desires such output to perform some video- or image-process-
ing task.

Example System

Embodiments of the various techniques as described
herein including the reconstruction techniques for generating
structure, camera parameters, and motion from point trajec-
tories may be executed on one or more computer systems,
which may interact with various other devices. One such
computer system is illustrated by FIG. 12. In different
embodiments, computer system 2000 may be any of various
types of devices, including, but not limited to, a personal
computer system, desktop computer, laptop, notebook, or
netbook computer, mainframe computer system, handheld
computer, workstation, network computer, a camera, a video
camera, a tablet or pad device, a smart phone, a set top box, a
mobile device, a consumer device, video game console, hand-
held video game device, application server, storage device, a
peripheral device such as a switch, modem, router, or in
general any type of computing or electronic device.

In the illustrated embodiment, computer system 2000
includes one or more processors 2010 coupled to a system
memory 2020 via an input/output (1/0) interface 2030. Com-
puter system 2000 further includes a network interface 2040
coupled to I/O interface 2030, and one or more input/output
devices 2050, such as cursor control device 2060, keyboard
2070, display(s) 2080, and touch- or multitouch-enabled
device(s) 2090. In some embodiments, it is contemplated that
embodiments may be implemented using a single instance of
computer system 2000, while in other embodiments multiple
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such systems, or multiple nodes making up computer system
2000, may be configured to host different portions or
instances of embodiments. For example, in one embodiment
some elements may be implemented via one or more nodes of
computer system 2000 that are distinct from those nodes
implementing other elements.

In various embodiments, computer system 2000 may be a
uniprocessor system including one processor 2010, or a mul-
tiprocessor system including several processors 2010 (e.g.,
two, four, eight, or another suitable number). Processors 2010
may be any suitable processor capable of executing instruc-
tions. For example, in various embodiments, processors 2010
may be general-purpose or embedded processors implement-
ing any of a variety of instruction set architectures (ISAs),
such as the x86, PowerPC, SPARC, or MIPS ISAs, or any
other suitable ISA. In multiprocessor systems, each of pro-
cessors 2010 may commonly, but not necessarily, be imple-
ment the same ISA.

In some embodiments, at least one processor 2010 may be
agraphics processing unit. A graphics processing unit or GPU
may be considered a dedicated graphics-rendering device for
a personal computer, workstation, game console or other
computing or electronic device. Modern GPUs may be very
efficient at manipulating and displaying computer graphics,
and their highly parallel structure may make them more effec-
tive than typical CPUs for a range of complex graphical
algorithms. For example, a graphics processor may imple-
ment a number of graphics primitive operations in a way that
makes executing them much faster than drawing directly to
the screen with a host central processing unit (CPU). In vari-
ous embodiments, the techniques disclosed herein may, at
least in part, be implemented by program instructions config-
ured for execution on one of, or parallel execution on two or
more of, such GPUs. The GPU(s) may implement one or
more application programmer interfaces (APIs) that permit
programmers to invoke the functionality of the GPU(s). Suit-
able GPUs may be commercially available from vendors such
as NVIDIA Corporation, ATT Technologies (AMD), and oth-
ers.

System memory 2020 may be configured to store program
instructions and/or data accessible by processor 2010. In vari-
ous embodiments, system memory 2020 may be imple-
mented using any suitable memory technology, such as static
random access memory (SRAM), synchronous dynamic
RAM (SDRAM), nonvolatile/Flash-type memory, or any
other type of memory. In the illustrated embodiment, pro-
gram instructions and data implementing desired functions,
such as those described above for embodiments of the various
techniques as described herein are shown stored within sys-
tem memory 2020 as program instructions 2025 and data
storage 2035, respectively. In other embodiments, program
instructions and/or data may be received, sent or stored upon
different types of computer-accessible media or on similar
media separate from system memory 2020 or computer sys-
tem 2000. Generally speaking, a computer-accessible
medium may include storage media or memory media such as
magnetic or optical media, e.g., disk or CD/DVD-ROM
coupled to computer system 2000 via I/O interface 2030.
Program instructions and data stored via a computer-acces-
sible medium may be transmitted by transmission media or
signals such as electrical, electromagnetic, or digital signals,
which may be conveyed via a communication medium such
as a network and/or a wireless link, such as may be imple-
mented via network interface 2040.

In one embodiment, I/O interface 2030 may be configured
to coordinate /O traffic between processor 2010, system
memory 2020, and any peripheral devices in the device,
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including network interface 2040 or other peripheral inter-
faces, such as input/output devices 2050. In some embodi-
ments, 1/O interface 2030 may perform any necessary proto-
col, timing or other data transformations to convert data
signals from one component (e.g., system memory 2020) into
a format suitable for use by another component (e.g., proces-
sor 2010). In some embodiments, I/O interface 2030 may
include support for devices attached through various types of
peripheral buses, such as a variant of the Peripheral Compo-
nent Interconnect (PCI) bus standard or the Universal Serial
Bus (USB) standard, for example. In some embodiments, the
function of I/O interface 2030 may be split into two or more
separate components, such as a north bridge and a south
bridge, for example. In addition, in some embodiments some
or all of the functionality of I/O interface 2030, such as an
interface to system memory 2020, may be incorporated
directly into processor 2010.

Network interface 2040 may be configured to allow data to
be exchanged between computer system 2000 and other
devices attached to a network, such as other computer sys-
tems, or between nodes of computer system 2000. In various
embodiments, network interface 2040 may support commu-
nication via wired or wireless general data networks, such as
any suitable type of Ethernet network, for example; via tele-
communications/telephony networks such as analog voice
networks or digital fiber communications networks; via stor-
age area networks such as Fibre Channel SANs, or via any
other suitable type of network and/or protocol.

Input/output devices 2050 may, in some embodiments,
include one or more display terminals, keyboards, keypads,
touchpads, scanning devices, voice or optical recognition
devices, or any other devices suitable for entering or retriev-
ing data by one or more computer system 2000. Multiple
input/output devices 2050 may be present in computer system
2000 or may be distributed on various nodes of computer
system 2000. In some embodiments, similar input/output
devices may be separate from computer system 2000 and may
interact with one or more nodes of computer system 2000
through a wired or wireless connection, such as over network
interface 2040.

As shown in FIG. 12, memory 2020 may include program
instructions 2025, configured to implement embodiments of
the various techniques as described herein, and data storage
2035, comprising various data accessible by program instruc-
tions 2025. In one embodiment, program instructions 2025
may include software elements of embodiments of the vari-
ous techniques as illustrated in the above Figures. Data stor-
age 2035 may include data that may be used in embodiments.
In other embodiments, other or different software elements
and data may be included.

Those skilled in the art will appreciate that computer sys-
tem 2000 is merely illustrative and is not intended to limit the
scope of the various techniques as described herein. In par-
ticular, the computer system and devices may include any
combination of hardware or software that can perform the
indicated functions, including a computer, personal computer
system, desktop computer, laptop, notebook, or netbook
computer, mainframe computer system, handheld computer,
workstation, network computer, a camera, a video camera, a
set top box, a mobile device, network device, internet appli-
ance, PDA, wireless phones, pagers, a consumer device,
video game console, handheld video game device, applica-
tion server, storage device, a peripheral device such as a
switch, modem, router, or in general any type of computing or
electronic device. Computer system 2000 may also be con-
nected to other devices that are not illustrated, or instead may
operate as a stand-alone system. In addition, the functionality
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provided by the illustrated components may in some embodi-
ments be combined in fewer components or distributed in
additional components. Similarly, in some embodiments, the
functionality of some of the illustrated components may not
be provided and/or other additional functionality may be
available.

Those skilled in the art will also appreciate that, while
various items are illustrated as being stored in memory or on
storage while being used, these items or portions of them may
be transferred between memory and other storage devices for
purposes of memory management and data integrity. Alter-
natively, in other embodiments some or all of the software
components may execute in memory on another device and
communicate with the illustrated computer system via inter-
computer communication. Some or all of the system compo-
nents or data structures may also be stored (e.g., as instruc-
tions or structured data) on a computer-accessible medium or
a portable article to be read by an appropriate drive, various
examples of which are described above. In some embodi-
ments, instructions stored on a computer-accessible medium
separate from computer system 2000 may be transmitted to
computer system 2000 via transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a wireless
link. Various embodiments may further include receiving,
sending or storing instructions and/or data implemented in
accordance with the foregoing description upon a computer-
accessible medium. Accordingly, the present invention may
be practiced with other computer system configurations.
Conclusion

Various embodiments may further include receiving, send-
ing or storing instructions and/or data implemented in accor-
dance with the foregoing description upon a computer-acces-
sible medium. Generally speaking, a computer-accessible
medium may include storage media or memory media such as
magnetic or optical media, e.g., disk or DVD/CD-ROM, vola-
tile or non-volatile media such as RAM (e.g. SDRAM, DDR,
RDRAM, SRAM, etc.), ROM, etc., as well as transmission
media or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as net-
work and/or a wireless link.

The various methods as illustrated in the Figures and
described herein represent example embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit of
this disclosure. It is intended that the invention embrace all
such modifications and changes and, accordingly, the above
description to be regarded in an illustrative rather than a
restrictive sense.

What is claimed is:

1. A method, comprising:

performing, by one or more computing devices:

obtaining an initial reconstruction of camera motion and
camera intrinsic parameters for an image sequence
including a plurality of frames, wherein the initial
reconstruction covers a portion of the image
sequence; and

selecting a next frame to be added to the current recon-
struction from a subset of the plurality of frames that
are not covered by the current reconstruction;

reconstructing camera motion and camera intrinsic
parameters for the selected frame according to the
current reconstruction and at least a portion of a set of
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point trajectories for the image sequence, wherein
said reconstructing adds the selected frame to the
current reconstruction; and

repeating said selecting and said reconstructing until the
current reconstruction covers the image sequence.

2. The method as recited in claim 1, wherein the next frame
is selected from a set of keyframes, wherein the set of key-
frames is a temporally spaced subset of the plurality of frames
of the image sequence.

3. The method as recited in claim 1, wherein said selecting
a next frame to be added to the current reconstruction from a
subset of the plurality of frames that are not covered by the
current reconstruction comprises:

selecting a direction in the image sequence in which to

select the next frame;

selecting a candidate frame rl at a distance from a last

frame in the current reconstruction according to the
selected direction;

computing the number of overlapping points s1 between

the candidate frame rl and the last frame in the current
reconstruction; and

if s1 is below a threshold, selecting r1 as the next frame.

4. The method as recited in claim 3, further comprising, if
s1 is not below the threshold:

selecting a new candidate frame r2 at a distance from rl

according to the selected direction;

computing the number of overlapping points s2 between

the candidate frame r2 and the last frame in the current
reconstruction;

if s1 equals s2 or if 52 is above the threshold, setting r1 to

r2 and repeating said selecting a new candidate frame r2
and said computing the number of overlapping points s2;
otherwise, selecting the current rl as the next frame.

5. The method as recited in claim 1, further comprising,
subsequent to adding the selected frame to the current recon-
struction, globally optimizing the current reconstruction,
wherein said globally optimizing the current reconstruction
refines the current reconstruction according to a nonlinear
optimization technique applied globally to the current recon-
struction.

6. The method as recited in claim 5, further comprising,
after said globally optimizing the current reconstruction,
determining one or more outlier points in the current recon-
struction and removing the determined outlier points from the
current reconstruction, wherein the outlier points are added to
a set of current outlier points.

7. The method as recited in claim 6, wherein said deter-
mining one or more outlier points in the current reconstruc-
tion comprises computing reprojection errors for all points in
the current reconstruction, wherein the one or more outlier
points are points for which the reprojection error is above a
threshold.

8. The method as recited in claim 5, further comprising,
after said globally optimizing the current reconstruction,
determining one or more inlier points from the set of outlier
points and adding the determined inlier points to the current
reconstruction.

9. The method as recited in claim 8, wherein said deter-
mining one or more inlier points from the set of outlier points
comprises computing reprojection errors for at least one of
the outlier points in the set of outlier points, wherein the one
or more inlier points are determined according to the com-
puted reprojection errors.

10. The method as recited in claim 8, further comprising
performing another global optimization of the current recon-
struction upon determining that more than a threshold num-
ber of inlier points were added to the current reconstruction.
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11. The method as recited in claim 5, further comprising,
after said globally optimizing the current reconstruction,
applying a self-calibration technique to at least two frames in
the current reconstruction to estimate camera intrinsic param-
eters for the at least two frames.
12. The method as recited in claim 1, further comprising,
upon determining that the current reconstruction is a projec-
tive reconstruction:
applying a self-calibration technique to the current recon-
struction to convert the projective reconstruction to a
Euclidian reconstruction;

if the self-calibration technique is successful, accepting the
Euclidian reconstruction as the current reconstruction;
and

if the self-calibration technique is not successful, reverting

the current reconstruction to the projective reconstruc-
tion.

13. The method as recited in claim 1, further comprising,
upon determining that the current reconstruction is a projec-
tive reconstruction:

computing a total reprojection error for the projective

reconstruction;

applying a self-calibration technique to the current recon-

struction to convert the projective reconstruction to a
Euclidian reconstruction;

computing a total reprojection error for the Euclidian

reconstruction;
comparing the total reprojection error for the projective
reconstruction to the total reprojection error for the
Euclidian reconstruction;

if the total reprojection error for the Euclidian reconstruc-
tion is less than or equal to a pre-defined factor of the
total reprojection error for the projective reconstruction,
accepting the Euclidian reconstruction as the current
reconstruction; and

if the total reprojection error for the Euclidian reconstruc-

tion is greater than the pre-defined factor of the total
reprojection error for the projective reconstruction,
reverting the current reconstruction to the projective
reconstruction.

14. A system, comprising:

one or more processors; and

a memory comprising program instructions, wherein the

program instructions are executable by at least one of the

one or more processors to:

obtain an initial reconstruction of camera motion and
camera intrinsic parameters for an image sequence
including a plurality of frames, wherein the initial
reconstruction covers a portion of the image
sequence; and

select a next frame to be added to the current reconstruc-
tion from a subset of the plurality of frames that are
not covered by the current reconstruction;

reconstruct camera motion and camera intrinsic param-
eters for the selected frame according to the current
reconstruction and at least a portion of a set of point
trajectories for the image sequence, wherein said
reconstructing adds the selected frame to the current
reconstruction; and

repeat said select and said reconstruct until the current
reconstruction covers the image sequence.

15. The system as recited in claim 14, wherein the program
instructions are further executable by at least one of the one or
more processors to, subsequent to adding the selected frame
to the current reconstruction, globally optimize the current
reconstruction according to a nonlinear optimization tech-
nique.
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16. The system as recited in claim 15, wherein the program
instructions are further executable by at least one of the one or
more processors to, after said globally optimizing the current
reconstruction:
determine one or more outlier points in current initial
reconstruction and remove the determined outlier points
from the initial reconstruction, wherein the outlier
points are added to a set of current outlier points;

determine one or more inlier points from the set of outlier
points and add the determined inlier points to the current
reconstruction; and

if more than a threshold number of inlier points were added

to the current reconstruction, globally optimize the cur-
rent reconstruction according to the nonlinear optimiza-
tion technique.

17. The system as recited in claim 14, wherein the program
instructions are further executable by at least one of the one or
more processors to:

apply a self-calibration technique to the current reconstruc-

tion to convert the current reconstruction from a projec-
tive reconstruction to a Euclidian reconstruction;

if the self-calibration technique is successful, accept the

Euclidian reconstruction as the current reconstruction;
and

if the self-calibration technique is not successful, revert the

current reconstruction to the projective reconstruction.
18. A non-transitory computer-readable storage medium
storing program instructions, wherein the program instruc-
tions are computer-executable to implement:
obtaining an initial reconstruction of camera motion and
camera intrinsic parameters for an image sequence
including a plurality of frames, wherein the initial recon-
struction covers a portion of the image sequence; and

selecting a next frame to be added to the current recon-
struction from a subset of the plurality of frames that are
not covered by the current reconstruction;

reconstructing camera motion and camera intrinsic param-
eters for the selected frame according to the current
reconstruction and at least a portion of a set of point
trajectories for the image sequence, wherein said recon-
structing adds the selected frame to the current recon-
struction; and

repeating said selecting and said reconstructing until the

current reconstruction covers the image sequence.
19. The non-transitory computer-readable storage medium
as recited in claim 18, wherein the program instructions are
further computer-executable to implement, subsequent to
adding the selected frame to the current reconstruction, glo-
bally optimizing the current reconstruction according to a
nonlinear optimization technique.
20. The non-transitory computer-readable storage medium
as recited in claim 19, wherein the program instructions are
further computer-executable to implement, after said globally
optimizing the current reconstruction:
determining one or more outlier points in current initial
reconstruction and removing the determined outlier
points from the initial reconstruction, wherein the out-
lier points are added to a set of current outlier points;

determining one or more inlier points from the set of outlier
points and adding the determined inlier points to the
current reconstruction; and

if more than a threshold number of inlier points were added

to the current reconstruction, globally optimizing the
current reconstruction according to the nonlinear opti-
mization technique.
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21. The non-transitory computer-readable storage medium
as recited in claim 18, wherein the program instructions are
further computer-executable to implement:
applying a self-calibration technique to the current recon-
struction to convert the current reconstruction from a 5
projective reconstruction to a Euclidian reconstruction;
if the self-calibration technique is successful, accepting the
Euclidian reconstruction as the current reconstruction;
and
if the self-calibration technique is not successful, reverting 10
the current reconstruction to the projective reconstruc-
tion.
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